IV Semester M.Sc. Degree Examination, June 2015 (RNS)

MATHEMATICS M-401 : Measure and Integration

Time: 3 Hours

Max. Marks: 80

Instruction: 1) Answer any 5 questions, choosing atleast two from each Part.

2) All questions carry equal marks.

PART-A

- 1, a) Define outer measure. Prove that outer measure is translation invariant.
 - b) For an interval I, show that m*(I) = I (I). Further, if A is a countable set, prove that m*(A) = 0
 - c) Define a measurable set. It A is measurable set and B is any set, then show that m*(A \cup B) + m*(A \cap B) = m*(A) + m*(B). (4+8+4)
- 2. a) State and prove countably additive property of Lebesgue measurable sets.
 - b) Let A be any subset of R. If E_1, E_2, \dots, E_n are disjoint Lebesgue measurable sets, then prove that $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right)$.
 - c) Prove that a set A is measurable if and only if its complement is also measurable (6+7+3)
- 3. a) Prove that every Borel set is Lebesgue measurable.
 - b) If f and g are two measurable real valued functions defined on the same domain, then prove that f-g, cf and f² are also measurable.
 - c) Define a measurable function. Show that the following statements are equivalent for a function f: E → R*, where R* denotes the extended real number system
 - i) {x ∈ E/f(x) > a} is measurable ∀ a ∈ R
 - ii) $|x \in E/f(x) \ge a|$ is measurable $\forall a \in R$
 - iii) $\{x \in E \mid f(x) < a\}$ is measurable $\forall a \in R$

- iv) $\{x \in E / f(x) \le a\}$ is measurable $\forall a \in R$ Further, show that the above statement imply that for any $b \in R^+$, $\{x \in E / f(x) = b\}$ is measurable. (6+2+8)
- a) Let E be a Lebesgue measurable set with finite measure, for a given ∈> 0, prove that there exists a finite union 'U' of open intervals such that m(E∆U) <∈, where E∆U = (E − U) ∪ (U − E).
 - b) Let f be a measurable function and g be a function defined over a measurable set E, such that f = g a.e. on E. Then prove that g is measurable.
 - c) If a sequence (f_n) converges on measure to f, then prove the following:
 - i) (f_n) converges on measure to every function g which is equivalent to f
 - ii) The limit function f is unique a. e. (7+4+5)

PART B

- 5. a) If f is Lebesgue Integral over E, then show that $\alpha mE \le \int f \le \beta mE$.
 - b) Let f be a bounded function on E with mE < ∞ . Then show that f is measurable iff $\inf_{\psi \geq f} \int_{\varepsilon}^{\psi} = \sup_{\phi \leq f} \int_{\phi}^{\psi}$ for all simple functions ϕ and ψ .
 - c) Let $\{f_n\}_{n=1}^\infty$ be a sequence of measurable functions defined on a set E of finite measure. Suppose $|f_n(x)| \leq M \ \forall \ n \ \text{and} \ \forall \ x \in E$. If $\lim_{n \to \infty} f_n(x) = f$ for each $x \in E$, then show that $\lim_{n \to \infty} \int_E f_n = \int_E f$. (2+10+4)
- a) State and prove Fatou's lemma. Deduce Monotone Convergence Theorem, Further, give an example to show that montone convergence theorem need not hold for a decreasing sequence of functions.
 - b) Let f be a non-negative measurable function which is integrable over a set E. Then prove that for a given $\varepsilon > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ are have $\int f < \varepsilon$. (10+6)